Polymers welding methods including biodegradable materials

Main Article Content

Mariusz Fabijański
Guofeng Han

Abstract

Welding is one of the most popular methods of joining elements not only from metal materials, but plastics also. Their great diversity, chemical structure and physical condition in which they are at the temperature of use has a significant impact on the quality of the joints made. Welding is a particularly useful method of joining, for example, during the welding of packaging, where biodegradable plastics that dominate in this technology, for example with aluminum foil, dominate. This article reviews the methods of welding plastics including biodegradable materials.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. Fabijański and G. Han, “Polymers welding methods including biodegradable materials”, Weld. Tech. Rev., vol. 92, no. 2, pp. 41-49, Mar. 2020.
Section
Review

References

Jasiulek P., Joining of polymers by welding and adhesive bonding. "KaBe" Publishing House, Poland 2006.

Wilczyński K. (editor.), Garbarski J., Nastaj A., Lewandowski A., Fabijański M., Wilczyński K.J., Buziak K, Narowski P., Zawistowski H., Processing of polymer materials, Publishing House of Warsaw University of Technology, 2018.

Skowrońska B., Chmielewski T., Pachla W., Kulczyk M., Skiba J., Pres W., Friction Weldability of UFG 316L Stainless Steel. Archives of Metallurgy and Materials, 2019, Vol. 64(3), 1051-1058. http://dx.doi.org/10.24425/amm.2019.129494

Przewodowski D., Golański D., The effect of technological parameters of PMMA thermoplastic welding in the hot air stream on the quality of the joints. Welding Technology Review, Vol. 91(8), 13-24. https://doi.org/10.26628/wtr.v91i8.995

Fabijański M., Mechanical properties of polylactide wood composites. Przem. Chem., 2019, Vol. 98(8), 1246-1248. http://dx.doi.org/10.15199/62.2019.8.6

Fabijański M., Mechanical strenght and flammability of polyactide. Przem. Chem., 2019, Vol. 98(4), 556-558. http://dx.doi.org/10.15199/62.2019.4.8

Fabijański M., Garbarski J., The effect of multiple processing on the strength of polylactide/polypropylene mix-ture. Przem. Chem., 2017, Vol. 96(3), 567-570. http://dx.doi.org/10.15199/62.2017.3.16

Fabijański M., Effect of calcium carbonate addition on mechanical properties of polylactide. Przem. Chem., 2017, Vol. 96(4), 894-896. http://dx.doi.org/10.15199/62.2017.4.33

Fabijański M., Study on mechanical properties of phosphogypsum-filled polylactide. Przem. Chem.,2016, Vol. 95(11), 2227-2229. http://dx.doi.org/10.15199/62.2016.11.15

Fabijański M.,Multiple processing of polylactide. Przem. Chem., 2016, Vol. 95(4), 874-876.
http://dx.doi.org/10.15199/62.2016.4.33

Kowieski S., Mikno Z., Pietras A., Resistance welding of modern high-strength steels. Biuletyn Instytutu Spawalnictwa w Gliwicach, 2012, Vol. 56(3), 46-51.

Mikno Z., Kowieski S., Bartnik Z., Derlukiewicz W., Projection welding in the finite element calculation. Weld-ing Technology Review, 2013, Vol. 85(11), 64-70. https://doi.org/10.26628/ps.v85i11.184

Zubrzak B., et al., The use of electromagnetic energy in industrial devices for welding plastics. Przegląd Elektro-techniczny, 2017, Vol. 93(1), 245-248.

Nakonieczny L., Wieczorek G., Technology of ultrasonic welding of plastics. Spajanie Metali i Tworzyw w Prak-tyce, 2004, 24-26.

Dziuba S., Welding methods for thermoplastics used in the construction of gas pipelines and defects in butt-welded joints. Instal, 2001, Vol. 12, 6-8.

Jasiulek P., Welding thermoplastic film using the hot wedge method. Spajanie Metali i Tworzyw w Praktyce, 2003, 1-2, 14-17.

Rydzkowski T., Michalska-Pożoga I., Development of Techniques of materials joining – welding of plastics. Welding Technology Review, 2015, Vol. 87(11), 18-21. https://doi.org/10.26628/ps.v87i11.523

Wałęsa K., Malujda I., Talaśka K., Zgrzewanie termoplastycznych pasów cięgnowych metodą gorącej płyty, Przegląd Mechaniczny, 2018, 6, 23-27. https://doi.org/10.15199/148.2018.6.2

Węglowska A., Pietras A., Impact of preheating on the quality of vibration welded joints made of polyamide PA66 glass fiber reinforced. Przetwórstwo Tworzyw, 2013, 154, 410-413.

Salacinski T., Chmielewski T., Winiarski M., Cacko R., Świercz R, Roughness of Metal Surface After Finishing Using Ceramic Brush Tools. Advances in Materials Science, Vol. 18(1), 2018, 20-27. https://doi.org/10.1515/adms-2017-0024

Chmielewski T., Golański D., The role of welding in the remanufacturing process. Welding International, 2015, Vol. 29(11), 861-864. https://doi.org/10.1080/09507116.2014.937604

Kudła K., Wojsyk K., Selected Possibilities of the FSW and FSSW Methods in the Removal of Material Defects and Welding Imperfections. Biuletyn Instytutu Spawalnictwa w Gliwicach, 2017, Vol. 61(5), 117-122.

Mingareev I., Weirauch F., Olowinsky A., Shah L., Kadwani P., Richardson M., Welding of polymers using a 2 μm thulium fiber laser. Optics & Laser Technology, 2012, Vol. 44(7), 2095-2099. https://doi.org/10.1016/j.optlastec.2012.03.020

Scott P. F., Smith W., Key parameters of high frequency welding. Tube International, 1996, 15,147-152.

Baake E., Nikanorov A., Ebel W., Numerical Modeling of Double High-Frequency Longitudinal Welding of Cladded Pipes. In:2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP). IEEE, 2019. p. 199-202.

Chen Y. J., Yue T. M., Guo Z. N., Fatigue behavior of titanium/PET joints formed by ultrasound-aided laser welding. Journal of Manufacturing Processes, 2018, Vol. 31, 356-363. https://doi.org/10.1016/j.jmapro.2017.11.027

Vendan S. Arungalai, et al., Ultrasonic Welding of Polymers. In: Confluence of Multidisciplinary Sciences for Polymer Joining. Springer, Singapore, 2019, 73-101.

Volkov S. S., Nerovnyi V. M., Kobernik N. V., Ultrasonic Cutting of Polymers. Russian Engineering Research, 2018, Vol. 38(6), 446-449. https://doi.org/10.3103/S1068798X18060187

Rahmi M., Abbasi M., Friction stir vibration welding process: modified version of friction stir welding process. The International Journal of Advanced Manufacturing Technology, 2017, Vol. 90(1-4), 141-151.
https://doi.org/10.1007/s00170-016-9383-9

Pal K., et al., An investigation on vibration welding of amorphous and semicrystalline polymers. Materials and Manufacturing Processes, 2016, Vol. 31(3), 372-378. https://doi.org/10.1080/10426914.2015.1019111

Raza S.F., Khan S.A. Mughal M.P., Optimizing the weld factors affecting ultrasonic welding of thermoplastics. The International Journal of Advanced Manufacturing Technology, 2019, Vol. 103(5-8), 2053-2067.
https://doi.org/10.1007/s00170-019-03681-7

Golański D., Chmielewski T., Skowrońska B., Rochalski D., Advanced Applications of Microplasma Welding. Biuletyn Instytutu Spawalnictwa w Gliwicach, 2018, Vol. 62(5), 53-63. https://doi.org/10.17729/ebis.2018.5/5

Becker F., Potente H., A step towards understanding the heating phase of laser transmission welding in poly-mers. Polymer Engineering & Science, 2002, Vol. 42(2), 365-374. https://doi.org/10.1002/pen.10954

Bachmann F. G., Russek U. A., Laser welding of polymers using high-power diode lasers. In: Photon processing in Microelectronics and Photonics. International Society for Optics and Photonics, 2002, 505-518. https://doi.org/10.1117/12.470660

Ilie M., et al., Through-transmission laser welding of polymers–temperature field modeling and infrared investigation. Infrared Physics & Technology, 2007, Vol. 51(1), 73-79. https://doi.org/10.1016/j.infrared.2007.02.003

Ruśkowski P., Gadomska-Gajadhur A., Polilaktyd w zastosowaniach medycznych. Tworzyw sztuczne w prze-myśle, 2, 2017, 32-35.