The effect of the preheating on to properties of the wear resistant welds

Main Article Content

Marek Gucwa
Jerzy Winczek
Miloš Mičian

Abstract

Wear resistant welds are used in many industries when it is necessary to protect machine components and structures against wear caused by operating conditions. Often the main parameter determining the usefulness of these welds is high hardness reaching about 60HRC. In many cases, after the surfacing process, a mesh of cracks is formed in the surface layer, which can affect the durability of the hard-wearing layers used. The paper presents the analysis of the influence of preheating before welding up to 400 ° C on the properties of welds and its effect on the number of cracks in the surface layer. The use of preheating allowed to reduce the number of cracks in the surfacing to 1. The optimum heating temperature was 200 ° C, for which the number of cracks was reduced and the lowest wear was recorded.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. Gucwa, J. Winczek, and M. Mičian, “The effect of the preheating on to properties of the wear resistant welds”, Weld. Tech. Rev., vol. 92, no. 2, pp. 7-14, Mar. 2020.
Section
Articles

References

Pokusová M., Brúsilová A., Šooš Ľ., Berta I., Abrasion wear behavior of high-chromium cast iron. Archives of Foundry Engineering, 2016, Vol. 16(2), 69-74. https://doi.org/10.1515/afe-2016-0028

Kopyciński D., Piasny S., Kawalec M., Madizhanova A., The Abrasive wear resistance of chromium cast iron. Archives of Foundry Engineering, 2014, Vol. 14(1), 63-66. https://doi.org/10.2478/afe-2014-0015

Szymura M., Czuprynski A., Różański M., Research on the properties of high chromium cast iron overlay welds deposited by tubular electrodes. Welding Technology Review, 2018, Vol. 90(10), 26-30.
https://doi.org/10.26628/wtr.v90i10.963

Górka J., Czupryński A., Żuk M., Adamiak M., Kopyść A., Properties and structure of deposited nanocrystalline coatings in relation to selected construction materials resistant to abrasive wear. Materials, 2018, Vol. 11(7), 1184; https://doi.org/10.3390/ma11071184

Okechukwu C., Dahunsi O. A., Ok P. K., Oladele I. O., Dauda M., Review on hardfacing as method of improving the servise life of critical components subjected to wear in service. Nigerian Journal of Technology, 2017, Vol. 36(4), 1095–1103. https://doi.org/10.4314/njt.v36i4.15

Bęczkowski R., Gucwa M., Defects appearing in the surfacing layers of abrasion resistant. Archive of Foundry Engineering, 2016, Vol. 16(4), 23-28. https://doi.org/10.1515/afe-2016-0077

Viňáš J., Janette Brezinová J., Greš M., Resistance of Cladding Layers Made by FCAW Method to Erosive Wear. Materials Science Forum, 2016, Vol. 862, 33-40. https://doi.org/10.4028/www.scientific.net/MSF.862.33

Buchanan V. E., Solidification and microstructural characterisation of iron–chromium basedhardfaced coat-ings deposited by SMAW and electric arc spraying. Surface & Coatings Technology, 2009, Vol. 203, 3638-3646. https://doi.org/10.1016/j.surfcoat.2009.05.051

Hornung J., Zikin A., Pichelbauer K.,Kalin M.,Kirchgaßner M., Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe–Cr–C hardfacings. Materials Science and Engineering: A, 2013, Vol. 576, 243-251. https://doi.org/10.1016/j.msea.2013.04.029

Catalogue Welding Alloys.

Chatterjee S., Pal T. K., Welded procedural effect on the performance of iron based hardfacing deposits on cast iron substrate. Journal of Materials Processing Technology, 2006, Vol. 173(1), 61-69. https://doi.org/10.1016/j.jmatprotec.2005.10.025

Nagentrau M., Mohd Tobi A. L., Sambu M., Jamian S., The influence of welding condition on the microstructure of WC hardfacing coating on carbon steel substrate. International Journal of Refractory Metals & Hard Materials, 2019, Vol. 82, 43-57. https://doi.org/10.1016/j.ijrmhm.2019.03.029

Chaidemenopoulos N. G., Psyllaki P. P., Pavlidou E., Vourlias G., Aspects on carbides transformations of Fe-based hardfacing deposits. Surface & Coatings Technology, 2019, Vol. 357, 651-661. https://doi.org/10.1016/j.surfcoat.2018.10.061

Czupryński A., Kik T., Melcer M., Porównanie odporności na zużycie ścierne płyt trudnościeralnych. Welding Technology Review, 2018, Vol. 90(5), 28-36. https://doi.org/10.26628/ps.v90i5.893

Correa E.O., N.G. Alcântara N.G., Valeriano L.C., Barbedo N.D., Chaves R.R., The effect of microstructure on abrasive wear of a Fe–Cr–C–Nb hardfacing alloy deposited by the open arc welding process. Surface & Coat-ings Technology, 2015, Vol. 276, 479–484. https://doi.org/10.1016/j.surfcoat.2015.06.026